skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sefidi, Aryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We demonstrate digital predistortion (DPD) using a novel, neural-network (NN) method to combat the nonlinearities in power amplifiers (PAs), which limit the power efficiency of mobile devices, increase the error vector magnitude, and cause inadequate spectral containment. DPD is commonly done with polynomial-based methods that use an indirect-learning architecture (ILA) which can be computationally intensive, especially for mobile devices, and overly sensitive to noise. Our approach using NNs avoids the problems associated with ILAs by first training a NN to model the PA then training a predistorter by backpropagating through the PA NN model. The NN DPD effectively learns the unique PA distortions, which may not easily fit a polynomial-based model, and hence may offer a favorable tradeoff between computation overhead and DPD performance. We demonstrate the performance of our NN method using two different power amplifier systems and investigate the complexity tradeoffs. 
    more » « less